
Lecture 36

Computational
Electromagnetics, Numerical
Methods

Due to the advent of digital computers and the blinding speed at which computations can be
done, numerical methods to seek solutions of Maxwell’s equations have become vastly popular.
Massively parallel digital computers now can compute at tera\peta\exa-flops throughputs
[209], where FLOPS stands for “floating operations per second”. They have also spawn terms
that we have not previously heard of (see also Figure 36.1).

Figure 36.1: Nomenclature for measuring the speed of modern day computers (courtesy of
Wikipedia [209]).

We repeat a quote from Freeman Dyson—“Technology is a gift of God. After the gift of
life it is perhaps the greatest of God’s gifts. It is the mother of civilizations, of arts and of
sciences.” The spurr for computer advancement is due to the second world war. During then,
men went to war while women stayed back to work as computers, doing laborious numerical
computations manually (see Figure 36.2 [210]), The need for a faster computer is obvious.
Unfortunately, in the last half century or so, we have been using a large part of the gift of
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358 Electromagnetic Field Theory

technology to destroy God’s greatest gift, life, in warfare!

Figure 36.2: A woman working as a computer shortly after the second world war (courtesy
of Wikipedia [210]).

36.1 Computational Electromagnetics and Numerical Meth-
ods

Due to the high fidelity of Maxwell’s equations in describing electromagnetic physics in na-
ture, often time, a numerical solution obtained by solving Maxwell’s equations is more reliable
than laboratory experiments. This field is also known as computational electromagnet-
ics. Numerical methods exploit the blinding speed of modern digital computers to perform
calculations, and hence to solve large system of equations.

Computational electromagnetics consists mainly of two classes of numerical solvers: one
that solves differential equations directly, the differential-equation solvers; and one that solves
integral equations, the integral equation solvers. Both these classes of equations are derived
from Maxwell’s equations.

36.1.1 Examples of Differential Equations

An example of differential equations written in terms of sources are the scalar wave equation:

(∇2 + k2)φ(r) = Q(r), (36.1.1)

An example of vector differential equation for vector electromagnetic field is

∇× µ−1 · ∇ ×E(r)− ω2ε ·E(r) = iωJ(r) (36.1.2)

These equations are linear equations. They have one commonality, i.e., they can be
abstractly written as

L f = g (36.1.3)
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where L is the differential operator which is linear, and f is the unknown, and g is the
driving source. Differential equations, or partial differential equations, as mentioned before,
have to be solved with boundary conditions. Otherwise, there is no unique solution to these
equations.

In the case of the scalar wave equation (36.1.1), L = (∇2 + k2) is a differential operator.
In the case of the electromagnetic vector wave equation (36.1.2), L = (∇×µ−1 ·∇×)−ω2ε·.
Furthermore, f will be φ(r) for the scalar wave equation (36.1.1), while it will be E(r) in the
case of vector wave equation for an electromagnetic system (36.1.2). The g on the right-hand
side can represent Q in (36.1.1) or iωJ(r) in (36.1.2).

36.1.2 Examples of Integral Equations

This course is replete with PDE’s, but we have not come across too many integral equations.
Therefore, we shall illustrate the derivation of some integral equations. Since the acoustic
wave problem is homomorphic to the electromagnetic wave problem, we will illustrate the
derivation of integral equation of scattering using acoustic wave equation.1

The surface integral equation method is rather popular in a number of applications, be-
cause it employs a homogeneous-medium Green’s function which is simple in form, and the
unknowns reside on a surface rather than in a volume. In this section, the surface integral
equations2 for scalar and will be studied first. Then, the volume integral equation will be
discussed next.

36.1.3 Surface Integral Equations

In an integral equation, the unknown to be sought is embedded in an integral. An integral
equation can be viewed as an operator equation as well, just as are differential equations. We
shall see how such integral equations with only surface integrals are derived, using the scalar
wave equation.

Figure 36.3: A two-region problem can be solved with a surface integral equation.

1The cases of electromagnetic wave equations can be found in Chew, Waves and Fields in Inhomogeneous
Media [34].

2These are sometimes called boundary integral equations [211,212].
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Consider a scalar wave equation for a two-region problem as shown in Figure 36.3. In
region 1, the governing equation for the total field is

(∇2 + k2
1)φ1(r) = Q(r), (36.1.4)

For simplicity, we will assume that the scatterer is impenetrable, meaning that the field in
region 2 is zero. Therefore, we need only define Green’s functions for regions 1 to satisfy the
following equations:

(∇2 + k2
1) g1(r, r′) = −δ(r− r′), (36.1.5)

The derivation here is similar to the that of Huygens’ principle. On multiplying Equation
(36.1.1) by g1(r, r′) and Equation (36.1.5) by φ1(r), and then subtracting the two resultant
equations, followed by integrating over region 1, we have, for r′ ∈ V1,

�

V1

dV [g1(r, r′)∇2φ1(r)− φ1(r)∇2g1(r, r′)]

=

�

V1

dV g1(r, r′)Q(r) + φ1(r′), r′ ∈ V1. (36.1.6)

Since ∇ · (g∇φ − φ∇g) = g∇2φ − φ∇2g, by applying Gauss’ theorem, the volume integral
on the left-hand side of (36.1.6) becomes a surface integral over the surface bounding V1.
Consequently,3

−
�

S+Sinf

dS n̂ · [g1(r, r′)∇φ1(r)− φ1(r)∇g1(r, r′)]

= −φinc(r′) + φ1(r′), r′ ∈ V1. (36.1.7)

In the above, we have let

φinc(r
′) = −

�

V1

dV g1(r, r′)Q(r), (36.1.8)

since it is the incident field generated by the source Q(r).
Note that up to this point, g1(r, r′) is not explicitly specified, as long as it is a solution of

(36.1.5). A simple choice for g1(r, r′) that satisfies the radiation condition in region 1 is

g1(r, r′) =
eik1|r−r

′|

4π|r− r′|
, (36.1.9)

It is the unbounded, homogeneous medium scalar Green’s function. In this case, φinc(r) is
the incident field generated by the source Q(r) in the absence of the scatterer. Moreover, the

3The equality of the volume integral on the left-hand side of (36.1.6) and the surface integral on the
left-hand side of (36.1.7) is also known as Green’s theorem for some authors [82].
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integral over Sinf vanishes when Sinf →∞ by virtue of the radiation condition.4 Then, after
swapping r and r′, we have

φ1(r) = φinc(r)−
�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V1. (36.1.10)

But if r′ /∈ V1 in (36.1.6), the second term, φ1(r), on the right-hand side of (36.1.6) would be
zero, for r′ would be in V2 where the integration is not performed. Therefore, we can write
(36.1.10) as

if r ∈ V1, φ1(r)
if r ∈ V2, 0

}
= φinc(r)−

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)]. (36.1.11)

The above equation is evocative of Huygens’ principle. It says that when the observation
point r is in V1, then the total field φ1(r) consists of the incident field, φinc(r), and the
contribution of field due to surface sources on S, which is the second term on the right-hand
side of (36.1.11). But if the observation point is in V2, then the surface sources on S generate
a field that exactly cancels the incident field φinc(r), making the total field in region 2 zero.
This fact is the core of the extinction theorem as shown in Figure 36.4 (see Born and Wolf
1980). These ideas were also discussed in the lecture on equivalence principles.

In (36.1.11), n̂ ·∇φ1(r) and φ1(r) act as surface sources. Moreover, they are impressed on
S, creating a field in region 2 that cancels exactly the incident field in region 2 (see Figure
36.4).

Figure 36.4: The illustration of the extinction theorem.

Applying the extinction theorem, integral equations can now be derived. So, using the
lower parts of Equations (36.1.11), we have

φinc(r) =

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)− φ1(r′)∇′g1(r, r′)], r ∈ V2, (36.1.12)

The integral equations above still has two independent unknowns, φ1 and n̂ · ∇φ1. Next,
boundary conditions can be used to eliminate one of these two unknowns.

4The derivation here is similar to that for Huygens’ principle in the previous lecture.
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An acoustic scatterer which is impenetrable either has a hard surface boundary condition
where normal velocity is zero, or it has soft surface where the pressure is zero (also called a
pressure release surface). Since the force or the velocity of the particle is proportional to the
∇φ, a hard surface will have n̂ · ∇φ1 = 0, or a homogeneous Neumann boundary condition,
while a soft surface will have φ1 = 0, a homogeneous Dirichlet boundary condition.

φinc(r) =

�

S

dS′ n̂′ · [g1(r, r′)∇′φ1(r′)], r ∈ V2, soft boundary condition

(36.1.13)

φinc(r) = −
�

S

dS′ φ1(r′)∇′g1(r, r′], r ∈ V2, hard boundary condition

(36.1.14)

The above are surface integral equations with the unknowns embedded in the integrals. They
are n̂′ · ∇′φ(r′) and φ(r′) for (36.1.13) and (36.1.14), respectively.

More complicated surface integral equations (SIEs) for penetrable scatterers, as well as
vector surface integral equations for the electromagnetics cases are derived in Chew, Waves
and Fields in Inhomogeneous Media [34,213]. Also, there is another class of integral equations
called volume integral equations (VIEs) [214]. They are also derived in [34].

Nevertheless, all linear integral equations can be unified under one notation:

L f = g (36.1.15)

where L is a linear operator. This is similar to the differential equation case expressed in
(36.1.3). The difference is that here, the unknown f represents the source of the problem,
while g is the incident field impinging on the scatterer or object. Furthermore, f does not need
to satisfy any boundary condition, since the field radiated via the Green’s function satisfies
the radiation condition.

Several linear operator equations have been derived in the previous sections. They are all
of the form

L f = g (36.1.16)

36.1.4 Function as a Vector

In the above, f is a functional vector which is the analogy of the vector f in matrix theory
or linear algebra. In linear algebra, the vector f is of length N in an N dimensional space. It
can be indexed by a set of countable index, say i, and we can described such a vector with
N numbers such as fi, i = 1, . . . , N explicitly. This is shown in Figure 36.5(a).

A function f(x), however, can be thought of as being indexed by x in the 1D case.
However, the index in this case is a continuum, and countably infinite. Hence, it corresponds
to a vector of infinite dimension and it lives in an infinite dimensional space.5

To make such functions economical in storage, for instance, we replace the function f(x)
by its sampled values at N locations, such that f(xi), i = 1, . . . , N . Then the values of the

5When these functions are square integrable implying finite “energy”, these infinite dimensional spaces are
called Hilbert spaces.
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function in between the stored points f(xi) can be obtained by interpolation.6 Therefore, a
function vector f(x), even though it is infinite dimensional, can be approximated by a finite
length vector, f . This concept is illustrated in Figure 36.5(b) and (c). This concept can be
generalized to a function of 3D space f(r). If r is sampled over a 3D volume, it can provide
an index to a vector fi = f(ri), and hence, f(r) can be thought of as a vector as well.

Figure 36.5: A function can be thought of as a vector.

36.1.5 Operator as a Map

Domain and Range Spaces

An operator like L above can be thought of as a map or a transformation. It maps a function
f defined in a Hilbert space V to g defined in another Hilbert space W . Mathematically, this
is written as

L : V →W (36.1.17)

6This is in fact how special functions like sin(x), cos(x), exp(x), Jn(x), Nn(x), etc, are computed and
stored in modern computers.
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indicating that L is a map of vectors in the space V to vectors in the space W . Here, V is
also called the domain space (or domain) of L while W is the range space (or range) of
L .

36.1.6 Approximating Operator Equations with Matrix Equations

36.2 Subspace Projection Methods

One main task of numerical method is first to approximate an operator equation L f = g by
a matrix equation L · f = g. To achieve the above, we first let

f ∼=
N∑
n=1

anfn = g (36.2.1)

In the above, fn, n, . . . , N are known functions called basis functions. Now, an’s are the
new unknowns to be sought. Also the above is an approximation, and the accuracy of the
approximation depends very much on the original function f . A set of very popular basis
functions are functions that form a piece-wise linear interpolation of the function from its
nodes. These basis functions are shown in Figure 36.6.

Figure 36.6: Examples of basis function in (a) one dimension, (b) two dimension. Each of
these functions are define over a finite domain. Hence, they are also called sub-domain basis
functions.

Upon substituting (36.2.1) into (36.1.16), we obtain

N∑
n=1

anL fn = g (36.2.2)
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Then, upon multiplying (36.2.2) by wm and integrate over the space that wm(r) is defined,
then we have

N∑
n=1

an 〈wm,L fn〉 = 〈wm, g〉 ,m = 1, . . . , N (36.2.3)

In the above, the inner product is defined as

〈f1, f2〉 =

�
drf1(r)f2(r) (36.2.4)

where the integration is over the support of the functions, or the space over which the functions
are defined.7 For PDEs these functions are defined over a 3D coordinate space, while in SIEs,
these functions are defined over a surface. In a 1D problems, these functions are defined over
a 1D coordinate space.

Dual Spaces

The functions wm,m = 1, . . . , N is known as the weighting functions or testing functions.
The testing functions should be chosen so that they can approximate well a function that
lives in the range space W of the operator L . Such set of testing functions lives in the dual
space of the range space. For example, if fr lives in the range space of the operator L , the
set of function fd, such that the inner product 〈fd, fr〉 exists, forms the dual space of W .

Matrix and Vector Representations

The above is a matrix equation of the form

L · a = g (36.2.5)

where [
L
]
mn

= 〈wm,L fn〉
[a]n = an, [g]m = 〈wm, g〉

(36.2.6)

What has effectively happened here is that given an operator L that maps a function that lives
in an infinite dimensional Hilbert space V , to another function that lives in another infinite
dimensional Hilbert space W , via the operator equation L f = g, we have approximated
the Hilbert spaces with finite dimensional spaces (subspaces), and finally, obtain a finite
dimensional matrix equation that is the representation of the original infinite dimensional
operator equation. This is the spirit of the subspace projection method.

In the above, L is the matrix representation of the operator L in the subspaces, and a
and g are the vector representations of f and g, respectively, in their respective subspaces.

When such a method is applied to integral equations, it is usually called the method
of moments (MOM). (Surface integral equations are also called boundary integral equations
(BIEs) in other fields [212]). When finite discrete basis are used to represent the surface
unknowns, it is also called the boundary element method (BEM) [215]. But when this method
is applied to solve PDEs, it is called the finite element method (FEM) [216–219], which is a
rather popular method due to its simplicity.

7This is known as the reaction inner product [34,45,121]. As oppose to most math and physics literature,
the energy inner product is used [121] where 〈f1, f2〉 =

�
drf∗1 (r)f2(r).
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36.2.1 Mesh Generation

In order to approximate a function defined on an arbitrary shaped surface or volume by a
finite sum of basis functions, it is best to mesh (tessellate or discretize) the surface and volume
by meshes. In 2D, all shapes can be tessellated by unions of triangles, while a 3D volume
can be meshed (tessellated) by unions of tetrahedrons. Such meshes are used not only in
CEM, but in other fields such as solid mechanics. Hence, there are many “solid modeling”
commercial software available to generate sophisticated meshes.

When a surface is curved, or of arbitrary shape, it can be meshed by union of triangles as
shown in Figure 36.7. When a volume is of arbitrary shape or a volume is around an arbitrary
shape object, it can be meshed by tetrahedrons as shown in Figure 36.8. Then basis functions
as used in (36.2.1) are defined to interpolate the field between nodal values or values defined
on the edges of a triangle or a tetrahedron.

Figure 36.7: An arbitrary surface can be meshed by a union of triangles.

Figure 36.8: A volume region can be meshed by a union of tetrahedra. But the surface of the
aircraft is meshed with a union of trianlges (courtesy of gmsh.info).

36.2.2 Differential Equation Solvers versus Integral Equation Solvers

As have been shown, the two classes of numerical solvers for Maxwell’s equations consist of
differential equation solvers and integral equation solvers. Differential equation solvers are
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generally easier to implement. As shall be shown in the next lecture, they can also be easily
implemented using finite difference solver. The unknowns in a differential equation solver
are the fields. The fields permeate all of space, and hence, the unknowns are volumetrically
distributed. When the fields are digitized by representing them by their point values in space,
they require a large number of unknowns to represent. The plus side is that the matrix system
associated with a differential equation solver is usually sparse, requiring less storage and less
time to solve.

As has been shown, integral equation solvers are formulated using Green’s functions. That
is integral equations are derived from Maxwell’s equations using Green’s function, where the
unknowns now are surface sources such as surface electric and magnetic currents. Therefore,
the unknowns are generally smaller, living only on the surface of a scatterer (or they occupy
a smaller part of space). Hence, they can be approximated by a smaller set of unknowns.
Thus, the matrix systems generally are smaller. Once the currents are found, then the fields
they generate can also be computed.

Since the derivation of integral equations requires the use of Green’s functions, they are
in general singular when r = r′, or when the observation point (observation point) r and the
source point r′ coincide. Care has to be taken to discretize the integral equations. Moreover,
a Green’s function connects every current source point on the surface of a scatterer with every
other source points yielding a dense matrix system. But fast methods have been developed
to solve such dense matrix systems [9].

36.3 Solving Matrix Equation by Optimization

When a matrix system get exceedingly large, it is preferable that a direct inversion of the
matrix equation not performed. Direct inversions (e.g., using Gaussian elimination [220]
or Kramer’s rule [221]) have computational complexity8 of O(N3), and requiring storage of
O(N2). Hence, when N is large, other methods have to be sought.

To this end, it is better to convert the solving of a matrix equation into an optimization
problem. These methods can be designed so that a much larger system can be solved with
an existing digital computer. Optimization problem results in finding the stationary point of
a functional.9 First, we will figure out how to find such a functional.

Consider a matrix equation given by

L · f = g (36.3.1)

For simplicity, we consider L as a symmetric matrix.10 Then the corresponding functional is

I = f t · L · f − 2f t · g (36.3.2)

Such a functional is called a quadratic functional because it is analogous to I = Lx2 − 2xg,
which is quadratic, in its simplest 1D rendition.

8The scaling of computer time with respect to the number of unknowns (degrees of freedom) is known in
the computer parlance as computational complexity.

9Functional is usually defined as a function of a function [34, 44]. Here, we include a function of a vector
to be a functional as well.

10Functional for the asymmetric case can be found in Chew, Waves and Fields in Inhomogeneous Media,
Chapter 5 [34].



368 Electromagnetic Field Theory

Taking the first variation with respect to f , namely, we let f = fo+δf . Then we substitute
this into the above, and collect the leading order and first order terms. Then we find the first
order approximation of the functional I as

δI = δf t · L · fo + f to · L · δf − 2δf t · g (36.3.3)

If L is symmetric, the first two terms are the same, and the above becomes

δI = 2δf t · L · fo − 2δf t · g (36.3.4)

For fo to be the optimal point or the stationary point, then its first variation has to be zero,
or that δI = 0. Thus we conclude that at the optimal point (or the stationary point),

L · fo = g (36.3.5)

Hence, the optimal point to the functional I in (36.3.2) is the solution to (36.3.1) or (36.3.5).

36.3.1 Gradient of a Functional

The above method, when applied to an infinite dimensional Hilbert space problem, is called
variational method, but the main ideas are similar. The wonderful idea about such a method
is that instead of doing direct inversion of a matrix system (which is expensive), one can
search for the optimal point or stationary point of the quadratic functional using gradient
search or gradient descent methods or some optimization method.

It turns out that the gradient of a quadratic functional can be found quite easily. Also
it is cheaper to compute the gradient of a functional than to find the inverse of a matrix
operator. To do this, it is better to write out functional using index (or indicial, or Einstein)
notation [222]. In this notation, the functional first variation δI in (36.3.4) becomes

δI = 2δfjLijfi − 2δfjgj (36.3.6)

Also, in this notation, the summation symbol is dropped, and summations over repeated
indices are implied. In the above, we neglect to distinguish between fo and f . It is implied
that f represents the optimal point. In this notation, it is easier to see what a functional
derivative is. We can differentiate the above with respect to fj easily to arrive at

∂I

∂fj
= 2Lijfi − 2gj (36.3.7)

Notice that the remaining equation has one index j remaining in index notation, meaning
that it is a vector equation. We can reconstitute the above using our more familiar matrix
notation that

δI

δf
= ∇f I = 2L · f − 2g (36.3.8)

The left-hand side is a notation for the functional derivative or the gradient of a functional in
a multi-dimensional space whichi is a vector obviated by indicial notation. And the right-hand
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side is the expression for calculating this gradient. One needs only to perform a matrix-vector
product to find this gradient. Hence, the computational complexity of finding this gradient
is O(N2) at worst if L is a dense matrix, and as low as O(N) if L is a sparse matrix. In a
gradient search method, such a gradient is calculated repeatedly until the optimal point is
found. Such methods are called iterative methods.

If the optimal point can be found in Niter iterations, then the CPU time scales as NiterN
α

where 1 < α < 2. There is a clever gradient search algorithm, called the conjugate gradient
method that can find the optimal point in Niter in exact arithmetics. In many gradient search
methods, Niter � N . The total solution time or solve time which is NiterN

α � NNα � N3,
resulting in great savings in computer time.

What is more important is that this method does not require the storage of the matrix L,
but a computer code that produces the vector go = L · f as an output, with f as an input.
Both f and go require only O(N) memory storage. Such methods are called matrix-free
methods. Even when L is a dense matrix, which is the case if it is the matrix representation
of matrix representation of some Green’s function, fast methods now exist to perform the
dense matrix-vector product in O(N logN) operations.11

The value I is also called the cost function, and its minimum is sought in the seeking of
the solution by gradient search methods. Detail discussion of these methods is given in [223].
Figure 36.9 shows the contour plot of a cost function in 2D. When the condition number12

of the matrix L is large (implying that the matrix is ill-conditioned), the contour plot will
resemble a deep valley. And hence, the gradient search method will tend to zig-zag along the
way as it finds the solution. Therefore, convergence is slow for matrices with large condition
numbers

Figure 36.9: Plot of a 2D cost function, I(x, y) for an ill-conditioned system (courtesy of
Numerical Recipe [223]). A higher dimensional plot of this cost function will be difficult.

Figure 36.10 shows a cartoon picture in 2D of the histories of different search paths from a

11Chew et al, Fast and Efficient Algorithms in CEM [9].
12This is the ratio of the largest eigenvalue of the matrix to its smallest eigenvalue.
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machine-learning example where a cost functional similar to I has to be minimized. Finding
the optimal point or the minimum point of a general functional is still a hot topic of research:
it is important in artificial intelligence.

Figure 36.10: Gradient search or gradient descent method is finding an optimal point (courtesy
of Y. Ioannou: https://blog.yani.io/sgd/).


